Week 5 Recap Proof by Contradiction P->9 Assume that $P \wedge ? Q \equiv ? (P \rightarrow Q)$ is TRUE. Show that $(P \land \neg q) \longrightarrow C (\equiv \text{contradiction})$. Proof by induction UNEW, P(n) Mathematical induction <u>Base step</u> : Prove $P(1) \equiv T$. Inductive step : Prove VKGN, P(K) -> P(K+1)=T. induction hypothesis Complete induction Base step : Prove P(1) = T. Inductive step : Prove [YKEN, (P(1) A-... A P(K)) -> P(K+1)]=T. induction hypothesis Common tricks : $\sum_{i=1}^{k+1} f(i) = f(i) + f(2) + \cdots + f(k) + f(k+1) = \left(\sum_{i=1}^{k} f(i)\right) + f(k+1)$ sum of the first k terms the (k+1)-th term $\frac{k+1}{\prod_{i=1}^{k} f(i)} = \underbrace{f(i) \cdot f(2) \cdot \cdots \cdot f(k)}_{\text{product of the first k terms}} \cdot \underbrace{f(k+1)}_{\text{the (k+1)-th term}} = \left(\underbrace{\prod_{i=1}^{k} f(i)}_{i=1} \right) \cdot \underbrace{f(k+1)}_{i=1}$ $\alpha^{k+1} = \alpha^k \cdot \alpha$ $(k+1)^{1} = k! \cdot (k+1)$

Strategies
Example 1: Prove
$$\forall n \in N$$
, $\sum_{i=1}^{N} f(i) = g(n)$
Base step: show that $f(i) = g(i)$.
Inductive step: assume that $\sum_{i=1}^{k} f(i) = g(k)$,
induction hypothesis
then $\sum_{i=1}^{k+1} f(i) = \left(\sum_{i=1}^{k} f(i)\right) + f(k+1) = g(k) + f(k+1) \stackrel{(2)}{=} g(k+1)$
by the induction hypothesis
 $\stackrel{(2)}{=}$ is the only step that needs to be checked.
Example 2: Prove $\forall n \in N$, $\sum_{i=1}^{m} f(i) \ge g(n)$
Base step: show that $f(i) \ge g(i)$.
Inductive step: assume that $\sum_{i=1}^{k} f(i) \ge g(k)$,
induction hypothesis
then $\sum_{i=1}^{k+1} f(i) = \left(\sum_{i=1}^{k} f(i)\right) + f(k+1) \ge g(k) + f(k+1) \stackrel{(2)}{\Longrightarrow} g(k+1)$.
 $\frac{k+1}{i=1} f(i) = \left(\sum_{i=1}^{k} f(i)\right) + f(k+1) \ge g(k) + f(k+1) \stackrel{(2)}{\Longrightarrow} g(k+1)$.
then $\sum_{i=1}^{k+1} f(i) = g(k+1) + f(k+1) \ge g(k+1)$, try to
prove $[g(k) + f(k+1) - g(k+1)] \ge 0$ instead 1
Same procedure when you replace " \geqslant " by " 2 ", " \le ", or "<"

Example 3 : Prove
$$\forall n \in IN$$
, $a^n > g(n)$ (a70)
Base step : show that $a > g(1)$.
Inductive step : assume that $a^k > g(k)$,
induction hypothesis
then $a^{k+1} = a^k \cdot a > a \cdot g(k)$ $(a^n) = g(k+1)$.
by the induction hypothesis
and $a > 0$
(a) is the only step that needs to be checked.
If it is unclear why $a \cdot g(k) > g(k+1)$, try to
prove $a \cdot g(k) - g(k+1) > 0$ instead !
Note that the base case does not always start at $n = 1$!
Examples ; $\forall n \ge 0$, $P(n)$ $\forall n \ge 5$, $P(n)$

Q1: Let q be a positive real number. Prove or disprove the following statement: if q is irrational, then \sqrt{q} is irrational.

Proof by contradiction:
Assume that q is irrational and
$$\sqrt{q}$$
 is rational.
Then, there exist integers m, n such that $\sqrt{q} = \frac{m}{n}$.
Subsequently, $q = \sqrt{q}$, $\sqrt{q} = \frac{m^2}{n^2}$.
Since m^2 , n^2 are integers, q is rational, which contradicts
the assumption that q is irrational.
Therefore, if q is irrational, then \sqrt{q} is irrational.

Q3: Prove using mathematical induction that $n^3 - n$ is divisible by 3 whenever n is a positive integer. Can you modify your argument to show a stronger result that $n^3 - n$ is always divisible by 6?

Base step: when n=1,
$$n^3 - n = (-1 = 0)$$
, which is
divisible by 3.
Inductive step: assume that $k^3 - k$ is divisible by 3, that
is, there exists an integer m such that $k^3 - k = 3m$.
Then, when $n = k+1$,
 $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + (-k - 1)$
 $= (k^3 - k) + 3k^2 + 3k$
 $(by_{nypothesis}) \rightarrow = 3m + 3k^2 + 3k = 3(m + k^2 + k)$.
Since $(m+k^2+k)$ is an integer, $(k+1)^3 - (k+1)$ is divisible by 3.
Therefore, by mathematical induction, $n^3 - n$ is divisible
by 3 for all positive integers n.

Q3: Prove using mathematical induction that $n^3 - n$ is divisible by 3 whenever n is a positive integer. Can you modify your argument to show a stronger result that $n^3 - n$ is always divisible by 6?

Base step: when n=1,
$$n^3 - n = (-1 = 0)$$
, which is
divisible by 6.
Inductive step: assume that $k^3 - k$ is divisible by 6, thet
is, there exists an integer m such that $k^3 - k = 6 \text{ m}$.
Then, when $n = k + 1$,
 $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + (-k - 1)$
 $= (k^3 - k) + 3k^2 + 3k$
 $(b_1)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_1)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 - (k+1) = k^3 + 3k^2 + 3k$
 $(b_2)^3 -$

Therefore, by mathematical induction, $n^3 - n$ is divisible by 6 for all positive integers n.

Q3: Prove using mathematical induction that $n^3 - n$ is divisible by 3 whenever n is a positive integer. Can you modify your argument to show a stronger result that $n^3 - n$ is always divisible by 6?

Proof without using mathematical induction:

$$n^3 - n = n(n^2 - 1) = (n - 1) \cdot n \cdot (n + 1)$$
.
Since $(n - 1)$, n , $(n + 1)$ are three consecutive
integers, at least one of them is even.
Therefore, $n^3 - n$ is even.
Similarly, since $(n - 1)$, n , $(n + 1)$ are three consecutive
integers, exactly one of them is a multiple of
3. Therefore, $n^3 - n$ is a multiple of 3.
Combining these two results, $n^3 - n$ is divisible
by 6.

Q4: Prove by mathematical induction that

$$\sum_{\bar{i}=1}^{n} \hat{i} = 1^{2} + 2^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1) \qquad \forall n \in \mathbb{N}$$

$$\begin{array}{l} \underline{Base \ step} : \ when \ n=1, \ LHS = |^{2} = 1, \\ RHS = \frac{1}{4} \cdot 1 \cdot 2 \cdot 3 = 1. \ LHS = RHS. \\ \underline{Inductive \ step} : \ assume \ that \ \left| \frac{k}{i=1} \right|^{2} = \frac{1}{6} k(k+1)(2k+1). \\ \hline Then, \ when \ n = k+1, \\ \hline Induction \ hypothesis \end{array}$$

$$\begin{array}{l} LHS = \sum_{i=1}^{k+1} i^{2} = \left(\sum_{i=1}^{k} i^{2}\right) + (k+1)^{2} \\ \left(\frac{k}{i=1} \right)^{2} = \left(\sum_{i=1}^{k} i^{2}\right) + (k+1)^{2} \\ \left(\frac{k}{i=1} \right)^{2} = \frac{1}{6} \cdot k(k+1)(2k+1) + (k+1) \\ = (k+1) \left[\frac{k(2k+1)}{6} + (k+1)\right] \\ = \frac{1}{6} (k+1) \left(\frac{2k^{2}+7k+6}{6}\right) \\ = \frac{1}{6} (k+1)(k+2)(2k+3) = \frac{1}{6} (k+1)(2k^{2}+7k+6) = LHS. \end{array}$$

Q5: Prove using mathematical induction that for every integer
$$n \ge 1$$
 and real number $x \ge -1$,
 $P(n, x) \equiv [(1+x)^n \ge 1+nx.]$
We are proving: $\forall n \in \mathbb{N}$, $(\forall x \ge -1, P(n, x))$.
Base step: To be shown: $(\forall x \ge -1, P(1, x)) \equiv T$.
When $n=1$, $\angle HS = I+x$, $RHS = I+x$. Thus, $\angle HS \ge RHS$
for all $x \ge -1$.
Inductive step: To be shown:
 $[\forall k \in \mathbb{N}, (\forall x \ge -1, P(k, x)) \longrightarrow (\forall x \ge -1, P(k+1, x))]$.
Assume that for all $x \ge -1$, $(H \times)^k \ge Hk \times$.
induction hyperhesis
When $n=k+1$, for all $x \ge -1$,
 $\angle HS - RHS = (H \times k^{+1}) - [I+(k+1)x]$
 $= (H \times)^k \cdot (Hx) - I - kx - x$
 $(*y induction) = I+x+kx+kx^2 - [I-kx - x]$
 $(*y induction) = I+x+kx+kx^2 - [I-kx - x]$
 $Since k \ge 0, x^2 \ge 0, kx^2 \ge 0$ and thus $\angle HS \ge RHS$.
Therefore, by mathematical induction, the inequality holds for
all integers $n \ge 1$ and real numbers $x \ge -1$.

Q6: Prove using mathematical induction that

$$2^n > n^2 + 6, \quad \forall n \ge 5.$$

Base step: When
$$n = 5$$
, $LHS = 2^{5} = 32$, $RHS = 5^{2} + 6 = 3$].
LHS > RHS.
Inductive step: assume that $2^{k} > k^{2} + 6$ (k > 5)
When $n = k + 1$,
 $LHS - RHS = 2^{k+1} - (k+1)^{2} - 6$
 $= 2^{k} \cdot 2 - k^{2} - 2k - 7$
(by induction) $\rightarrow 7 2 (k^{2} + 6) - k^{2} - 2k - 7$
 $= 2k^{2} + 12 - k^{2} - 2k - 7$
 $= 2k^{2} + 12 - k^{2} - 2k - 7$
 $= k^{2} - 2k + 5$
 $= (k-1)^{2} + 4 = 7 \cdot 4 > 0$.
Thus, LHS > RHS.

Therefore, by monthematical induction, we conclude that the inequality holds for all integers $n \ge 5$.

Additional challenges

Prove by mathematical induction that

$$2^n < (n+1)!$$

for all integer $n \geq 2$.

Base step: When
$$n = 2$$
, $LHS = 2^{2} = 4$,
RHS = $(2+1)! = 3! = 6$. Thus, the inequality holds when $n=2$.
Inductive step: assume that the inequality holds when $n=k$,
i.e. $2^{k} < [k+1]!$
Then, when $n = k+1$,
 $2^{k+1} = 2^{k} \cdot 2 < (k+1)! \cdot 2$
 $(since 2 < k+2) \rightarrow < (k+1)! \cdot (k+2)$
 $= (k+2)! = [(k+1)+1]!$
Thus, the inequality holds when $n = k+1$.
Therefore, by mathematical induction, $2^{n} < (n+1)!$ for
all integers $n \ge 2$.

Prove by mathematical induction that

$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

for all integers $n \geq 2$.

Base step : When
$$n=2$$
, $LHS = 1+\frac{1}{\sqrt{2}} > \frac{3}{2}$,
 $RHS = \sqrt{2} < \frac{3}{2}$. Thus, the inequality holds when $n=2$.
Inductive step - assume that the inequality holds when $n=k$,
i.e. $\frac{k}{1-1} = \frac{1}{\sqrt{1}} > \sqrt{k}$.
Then, when $n = k+1$,
 $LHS - RHS = \left(\frac{k+1}{1-1} + \frac{1}{\sqrt{1}}\right) - \sqrt{k+1} = \left(\frac{k}{1-1} + \frac{1}{\sqrt{1}}\right) + \frac{1}{\sqrt{k+1}} - \sqrt{k+1}$
 $= \sqrt{k} - \sqrt{k+1} + \frac{1}{\sqrt{k+1}}$
This is a commuly used $= (\sqrt{k} - \sqrt{k+1}) \cdot \frac{\sqrt{k} + \sqrt{k+1}}{\sqrt{k} + \sqrt{k+1}} + \frac{1}{\sqrt{k+1}}$
 $= \frac{1}{\sqrt{k} - \sqrt{k+1}} + \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+1}}$
 $\sqrt{k} - \sqrt{k} + \sqrt{k+1} + \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+1}}$
 $\sqrt{k} - \sqrt{k} + \sqrt{k+1} + \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+1}} = \frac{1}{\sqrt{k} + \sqrt{k+1}} > \sqrt{k}$

Thus, the inequality holds when
$$n=k+1$$
.
Therefore, by mathematical induction, the inequality holds for
all integers $n \ge 2$.

Prove or disprove: for each integer $n \ge 0, 2^{2n} - 1$ is divisible by 3.

Proof: Base step: when
$$n=0$$
, $2^{2n}-1 = 2^{\circ}-1 = 0$, which
is divisible by 3.
Inductive step: assume that $2^{2^{k}}-1$ is divisible by 3, i.e.
there exists $m \in \mathbb{Z}$ such that $2^{2^{k}}-1 = 3m \Longrightarrow 2^{2^{k}} = 3m \pm 1$.
Then, when $n=k\pm 1$,
 $2^{2^{(k+1)}}-1 = 2^{2^{k+2}}-1 = 2^{2^{k}} \cdot 2^{2^{k}}-1 = 4 \cdot 2^{2^{k}}-1$
 $= 4 \cdot (3m\pm 1)-1 = 12m\pm 4-1 = 12m\pm 3$
 $= 3(4m\pm 1)$.
Since $(4m\pm 1)$ is an integer, $2^{2^{(k\pm 1)}}-1$ is divisible by 3.
Therefore, by mathematical induction, $2^{2^{n}}-1$ is divisible by 3.
Therefore, by mathematical induction, $2^{2^{n}}-1$ is divisible by 3.

$$2^{2n} - 1 = 2^{n} \cdot 2^{n} - 1 = 4^{n} - 1$$
.
 $4^{n} \mod 3 = (4 \mod 3)^{n} \mod 3 = 1^{n} \mod 3 = 1$.
Therefore, $4^{n} \equiv 1 \pmod{3}$ and thus $2^{2n} - 1 = 4^{n} - 1$
is a multiple of 3.

Use mathematical induction to show that

$$\sum_{i=1}^{n} \left(-i\right)^{i-1} i^{2} = 1^{2} - 2^{2} + 3^{2} - \dots + (-1)^{n-1} n^{2} = (-1)^{n-1} \cdot \frac{n(n+1)}{2}$$

whenever n is a positive integer.

Base step: when
$$n=1$$
, $\angle HS = (-1)^{\circ} \cdot 1^{\circ} = 1$,
 $RHS = (-1)^{\circ} \cdot \frac{1 \cdot 2}{2} = 1$ and $\angle HS = RHS$,
Inductive step: assume that $\stackrel{k}{\underset{i=1}{\leftarrow}} (+1)^{i-1} \cdot \frac{k(k+1)}{2}$.
Then, when $n = k+1$,
 $\angle HS = \stackrel{k+1}{\underset{i=1}{\leftarrow}} (+1)^{i-1} \cdot \frac{1}{2} = (\stackrel{k}{\underset{i=1}{\leftarrow}} (+1)^{i-1} \cdot \frac{1}{2}) + (-1)^{k} (k+1)^{2}$
 $= (-1)^{k-1} \frac{k(k+1)}{2} + (-1)^{k} (k+1)^{2}$
 $= (-1)^{k-1} (k+1) \cdot [\stackrel{k}{\underset{i=2}{\leftarrow}} + (+1)(k+1)]$
 $= (-1)^{k-1} (k+1) \cdot [\stackrel{k}{\underset{i=2}{\leftarrow}} - 1]$
 $= (-1)^{k-1} (k+1) \cdot (-1) \cdot \frac{k+2}{2}$
 $= (-1)^{k} \frac{(k+1)(k+2)}{2}$
 $= RHS$.
Thus, the equation holds when $n = k+1$.
Therefore, by mathematical induction, the equation holds
for all positive integers n.